By Topic

Investigating 3-D Model and Part Information for Improving Content-Based Vehicle Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yen-Liang Lin ; Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan ; Ming-Kuang Tsai ; Winston H. Hsu ; Chih-Wei Chen

Content-based vehicle retrieval in unconstrained environment plays an important role in surveillance systems. However, due to large variations in viewing angle/position, illumination, occlusion, and background, traditional vehicle retrieval is extremely challenging. We approach this problem in a different way by rectifying vehicles from disparate views into the same reference view and searching the vehicles based on informative parts such as grille, lamp, and wheel. To extract those parts, we fit 3-D vehicle models to a 2-D image using active shape model. In the experiments, we compare different 3-D model fitting approaches and verify that the impact of part rectification on the content-based vehicle retrieval performance is significant. We propose a model fitting approach with weighted Jacobian system which leverages the prior knowledge of part information and shows promising improvements. Then, we use pyramid histogram of orientation feature to describe rectified parts (e.g., grille, wheel, lamp). We compute mean average precision of vehicle retrieval with L1 distance on NetCarShow300 dataset, a new challenging dataset we construct. We conclude that it benefits more from the fusion of informative rectified parts (e.g., grille, lamp, wheel) than a whole vehicle image described by SIFT feature for content-based vehicle retrieval.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:23 ,  Issue: 3 )