By Topic

Moving Horizon State Estimation for Networked Control Systems With Multiple Packet Dropouts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Binqiang Xue ; Dept. of Autom., Shanghai Jiao Tong Univ., Shanghai, China ; Li, Shaoyuan ; Quanmin Zhu

This technical note studies some of the challenging issues on moving horizon state estimation for networked control systems in the presence of multiple packet dropouts in both sensor-to-controller and controller-to-actuator channels, which both situations are modeled by two mutually independent stochastic variables satisfying the Bernoulli binary distribution. Compared with standard Kalman filter, this study proposes a novel moving horizon estimator to deal with the uncertainties induced from the multiple packet dropouts, which has a larger degree of freedom to obtain better behavior by tuning the weight parameters. A sufficient condition for the convergence of the norm of the average estimation error is also presented to guarantee the performance of the estimator. Finally, a real-time simulation experiment is presented to demonstrate the feasibility and efficiency of the proposed method.

Published in:

Automatic Control, IEEE Transactions on  (Volume:57 ,  Issue: 9 )