By Topic

A Spurious-Free Discontinuous Galerkin Time-Domain Method for the Accurate Modeling of Microwave Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Alvarez, J. ; EADS-CASA, Getafe, Spain ; Angulo, L. ; Bretones, A.R. ; Garcia, S.G.

The simulation of highly resonant structures requires techniques that are accurate and free of spurious-mode contamination. Spurious modes can severely corrupt the solution of a physical problem, and their suppression is a must for any numerical scheme in the frequency or in the time domain (TD). In this paper, we present the application of a highly accurate spurious-free vector discontinuous Galerkin TD method to waveguide applications. We show that spurious solutions (which increase with the number of degrees of freedom of the problem) can be efficiently attenuated by using penalized fluxes. For validation, we apply our approach to the simulation of microwave filters since their highly resonant behavior is challenging for TD techniques.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 8 )