Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Interface circuits for chip-to-chip data transfer at GHz rates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Przybysz, J.X. ; Northrop Grummen Sci. & Technol. Center, Pittsburgh, PA, USA ; Miller, D.L. ; Martinet, S.S. ; Joonhee Kang
more authors

Interface circuits for the transfer of data between Single Flux Quantum (SPQ) circuits have been designed, fabricated, and operated at speeds up to 3 Gigabits per second. The circuit employed an improved version of the SFQ/Latch converter, a Modified Variable Threshold Logic (MVTL) OR/AND gate, a 3/spl times/ latching amplifier, and a 3/spl times/-to-10/spl times/ latching amplifier. The amplifier circuits employed stacks of latching junctions. Resistors between the parallel stacks of junctions damped residual currents to prevent flux trapping during reset. Tolerance to critical current variations in the series stacks of junctions was provided by inductive chokes on the input junction shunting resistors. Microwave modeling programs were used to ensure proper distribution of the applied current to all of the latching elements. The circuit transferred data at 3 Gigabits per second from one SFQ circuit up to room temperature and back to another SFQ circuit through 3.4 meters of 50-ohm cable.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:7 ,  Issue: 2 )