By Topic

Detection of laser-induced nanosecond ultrasonic pulses in metals using a pancake coil and a piezoelectric sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kozhushko, Victor V. ; Inst. of Phys., Karl-Franzens-Univ. of Graz, Graz, Austria ; Krenn, Heinz

A piezoelectric sensor and a pancake coil sensor were used for broadband detection of laser-induced ultrasound in single-crystal aluminum and polycrystalline nickel. Pressure pulses with pronounced compression phases were induced by laser pulses of 5 ns duration from one side of the specimens and detected from the opposite side. A coupling layer of water was required for the piezoelectric method, whereas the pancake coil placed in the biasing permanent field of a cylindrical magnet ~0.25 T allowed noncontact detection. The signals detected by a piezoelectric transducer showed bipolar form and their spectra covered the range from 5 to 90 MHz. The signal measured in aluminum by a pancake coil was assigned to the eddy current sources and had single polarity. The peak-to-peak value of the signal in nickel was higher and had bipolar form because of the inverse magnetostrictive effect. The high-frequency limit detected by the pancake coil approached 200 MHz.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:59 ,  Issue: 6 )