By Topic

MARLA: MapReduce for Heterogeneous Clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fadika, Z. ; Comput. Sci. Dept., Binghamton Univ., Binghamton, NY, USA ; Dede, E. ; Hartog, J. ; Govindaraju, M.

MapReduce has gradually become the framework of choice for "big data". The MapReduce model allows for efficient and swift processing of large scale data with a cluster of compute nodes. However, the efficiency here comes at a price. The performance of widely used MapReduce implementations such as Hadoop suffers in heterogeneous and load-imbalanced clusters. We show the disparity in performance between homogeneous and heterogeneous clusters in this paper to be high. Subsequently, we present MARLA, a MapReduce framework capable of performing well not only in homogeneous settings, but also when the cluster exhibits heterogeneous properties. We address the problems associated with existing MapReduce implementations affecting cluster heterogeneity, and subsequently present through MARLA the components and trade-offs necessary for better MapReduce performance in heterogeneous cluster and cloud environments. We quantify the performance gains exhibited by our approach against Apache Hadoop and MARIANE in data intensive and compute intensive applications.

Published in:

Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on

Date of Conference:

13-16 May 2012