By Topic

40 Gb/s Low-Power 4:1 Multiplexer Based on Resonant Tunneling Diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jongwon Lee ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Sunkyu Choi ; Jooseok Lee ; Kyounghoon Yang

An integrated resonant tunneling diode (RTD)-based 4:1 multiplexer core for low power consumption and high-speed operation is proposed. The proposed 4:1 multiplexer core is designed based on a power-efficient negative differential resistance (NDR) circuit topology, which actively utilizes the unique NDR characteristics of the RTD. The proposed IC is comprised of two RTD-based 2:1 multiplexers and a 2:1 selector. The designed IC has been fabricated using an InP RTD/heterojunction bipolar transistor (HBT) monolithic microwave integrated circuit technology, which is optimized by introducing an undercut process in the stacked RTD/HBT epistructure. A low power consumption of 75 mW at a supply voltage of -2.9 V has been achieved at a speed up to 40 Gb/s. The implemented IC, which has a higher complexity than monolithically integrated RTD/transistor digital circuits reported to date, is the first demonstration of a low-power high-speed 4:1 multiplexer IC based on an NDR device technology.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:11 ,  Issue: 5 )