Cart (Loading....) | Create Account
Close category search window
 

Magnetic field dependence of thermal excitations in Josephson junctions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Castellano, M.G. ; Ist. di Elettronica dello Stato Solido, Rome, Italy ; Torrioli, G. ; Cosmelli, C. ; Chiarello, F.
more authors

We have measured the rate of escape out of the zero-voltage state in Josephson tunnel junctions as a function of the applied magnetic field. A marked difference is found in the behaviour of long and small junctions. In all cases, the statistical distribution of the switching currents can be described using a Kramers model for the escape process, where the barrier to be overcome is the Josephson barrier and the activation energy is due to an effective temperature T/sub e/. For small junctions T/sub e/ coincides, as expected, with the thermodynamic temperature, regardless of the applied magnetic field. For long junctions instead it is found that the escape temperature depends markedly on the magnetic field and on the junction geometry (inline or overlap), suggesting a close relationship with the magnetic field distribution inside the junction.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:7 ,  Issue: 2 )

Date of Publication:

June 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.