By Topic

Semi-Random Backoff: Towards Resource Reservation for Channel Access in Wireless LANs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yong He ; Tsinghua Univ. and MSR Asia, Beijing, China ; Jie Sun ; Xiaojun Ma ; Athanasios V. Vasilakos
more authors

This paper proposes a semi-random backoff (SRB) method that enables resource reservation in contention-based wireless LANs. The proposed SRB is fundamentally different from traditional random backoff methods because it provides an easy migration path from random backoffs to deterministic slot assignments. The central idea of the SRB is for the wireless station to set its backoff counter to a deterministic value upon a successful packet transmission. This deterministic value will allow the station to reuse the time-slot in consecutive backoff cycles. When multiple stations with successful packet transmissions reuse their respective time-slots, the collision probability is reduced, and the channel achieves the equivalence of resource reservation. In case of a failed packet transmission, a station will revert to the standard random backoff method and probe for a new available time-slot. The proposed SRB method can be readily applied to both 802.11 DCF and 802.11e EDCA networks with minimum modification to the existing DCF/EDCA implementations. Theoretical analysis and simulation results validate the superior performance of the SRB for small-scale and heavily loaded wireless LANs. When combined with an adaptive mechanism and a persistent backoff process, SRB can also be effective for large-scale and lightly loaded wireless networks.

Published in:

IEEE/ACM Transactions on Networking  (Volume:21 ,  Issue: 1 )