Cart (Loading....) | Create Account
Close category search window

Driver drowsiness recognition based on computer vision technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Zhang, Wei ; State Key Laboratory for Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China ; Cheng, Bo ; Lin, Yingzi

Driver drowsiness is one of the major causes of traffic accidents. This paper presents a nonintrusive drowsiness recognition method using eye-tracking and image processing. A robust eye detection algorithm is introduced to address the problems caused by changes in illumination and driver posture. Six measures are calculated with percentage of eyelid closure, maximum closure duration, blink frequency, average opening level of the eyes, opening velocity of the eyes, and closing velocity of the eyes. These measures are combined using Fisher's linear discriminant functions using a stepwise method to reduce the correlations and extract an independent index. Results with six participants in driving simulator experiments demonstrate the feasibility of this video-based drowsiness recognition method that provided 86% accuracy.

Published in:

Tsinghua Science and Technology  (Volume:17 ,  Issue: 3 )

Date of Publication:

June 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.