By Topic

Intelligent systems based on reinforcement learning and fuzzy logic approaches, "Application to mobile robotic"

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lakhmissi Cherroun ; Sciences and Technology Department, University of Djelfa - 17000 - Algeria ; Mohamed Boumehraz

One of the standing challenging aspects in mobile robotics is the ability to navigate autonomously. It is a difficult task, which requiring a complete modeling of the environment and intelligent controllers. This paper presents an intelligent navigation method for an autonomous mobile robot which requires only a scalar signal likes a feedback indicating the quality of the applied action. Instead of programming a robot, we will let it only learn its own strategy. The Q-learning algorithm of reinforcement learning is used for the mobile robot navigation by discretizing states and actions spaces. In order to improve the mobile robot performances, an optimization of fuzzy controllers will be discussed for the robot navigation; based on prior knowledge introduced by a fuzzy inference system so that the initial behavior is acceptable. The effectiveness of this optimization method is verified by simulation.

Published in:

Information Technology and e-Services (ICITeS), 2012 International Conference on

Date of Conference:

24-26 March 2012