By Topic

Empirical Test of Theoretically Based Correction for Path Integrated Attenuation in Simulated Spaceborne Precipitation Radar Observations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
David A. Short ; National Institute of Information and Communications Technology, Koganei, Tokyo, Japan ; Katsuhiro Nakagawa ; Toshio Iguchi

Data from the TRMM precipitation radar is providing unprecedented information on the 3D structure of precipitation systems and estimates of precipitation rates over the oceans and land of the global tropics and subtropics. Algorithms for estimating precipitation rates from observations of apparent radar reflectivity depend on procedures for correcting for attenuation, especially in regions where intense deep convection occurs. The well-known problem of non-uniform beam filling is a source of error in the estimates, caused by unresolved horizontal variability in highly correlated characteristics of precipitation, such as specific attenuation, rain rate, and the effective radar reflectivity factor, that are fundamentally related to the size distribution of hydrometeors. This paper presents an empirical test of a theoretically based procedure for correcting for attenuation by means of a simulation study. Data for simulating spaceborne radar observations were obtained from a ground based scanning radar in Okinawa during a field experiment in June 2004. The correction procedure, reviewed briefly here, has been developed by formulating and analytically solving a statistically based model of non-uniform beam filling. The empirical test shows that the correction has the potential to improve retrievals of rain rate in intense convection, provided that reasonable estimates of a governing parameter can be obtained from the satellite data.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:5 ,  Issue: 3 )