By Topic

Achieving AWGN Capacity Under Stochastic Energy Harvesting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ozel, O. ; Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA ; Ulukus, Sennur

In energy harvesting communication systems, an exogenous recharge process supplies energy necessary for data transmission and the arriving energy can be buffered in a battery before consumption. We determine the information-theoretic capacity of the classical additive white Gaussian noise (AWGN) channel with an energy harvesting transmitter with an unlimited sized battery. As the energy arrives randomly and can be saved in the battery, codewords must obey cumulative stochastic energy constraints. We show that the capacity of the AWGN channel with such stochastic channel input constraints is equal to the capacity with an average power constraint equal to the average recharge rate. We provide two capacity achieving schemes: save-and-transmit and best-effort-transmit. In the save-and-transmit scheme, the transmitter collects energy in a saving phase of proper duration that guarantees that there will be no energy shortages during the transmission of code symbols. In the best-effort-transmit scheme, the transmission starts right away without an initial saving period, and the transmitter sends a code symbol if there is sufficient energy in the battery, and a zero symbol otherwise. Finally, we consider a system in which the average recharge rate is time varying in a larger time scale and derive the optimal offline power policy that maximizes the average throughput, by using majorization theory.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 10 )