Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Psychophysical Dimensions of Tactile Perception of Textures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Okamoto, S. ; Dept. of Mech. Sci. & Eng., Nagoya Univ., Nagoya, Japan ; Nagano, H. ; Yamada, Y.

This paper reviews studies on the tactile dimensionality of physical properties of materials in order to determine a common structure for these dimensions. Based on the commonality found in a number of studies and known mechanisms for the perception of physical properties of textures, we conclude that tactile textures are composed of three prominent psychophysical dimensions that are perceived as roughness/smoothness, hardness/softness, and coldness/warmness. The roughness dimension may be divided into two dimensions: macro and fine roughness. Furthermore, it is reasonable to consider that a friction dimension that is related to the perception of moistness/dryness and stickiness/slipperiness exists. Thus, the five potential dimensions of tactile perception are macro and fine roughness, warmness/coldness, hardness/softness, and friction (moistness/dryness, stickiness/slipperiness). We also summarize methods such as psychological experiments and mathematical approaches for structuring tactile dimensions and their limitations.

Published in:

Haptics, IEEE Transactions on  (Volume:6 ,  Issue: 1 )