By Topic

D-Snake: Image Registration by As-Similar-As-Possible Template Deformation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Levi, Z. ; Comput. Sci. Dept., Technion - Israel Inst. of Technol., Haifa, Israel ; Gotsman, C.

We describe a snake-type method for shape registration in 2D and 3D, by fitting a given polygonal template to an acquired image or volume data. The snake aspires to fit itself to the data in a shape which is locally As-Similar-As-Possible (ASAP) to the template. Our ASAP regulating force is based on the Moving Least Squares (MLS) similarity deformation. Combining this force with the traditional internal and external forces associated with a snake leads to a powerful and robust registration algorithm, capable of extracting precise shape information from image data.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:19 ,  Issue: 2 )