By Topic

Secure SOurce-BAsed Loose Synchronization (SOBAS) for Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Selcuk Uluagac, A. ; Commun. Syst. Center, Georgia Inst. of Technol., Atlanta, GA, USA ; Beyah, R.A. ; Copeland, J.A.

We present the Secure SOurce-BAsed Loose Synchronization (SOBAS) protocol to securely synchronize the events in the network, without the transmission of explicit synchronization control messages. In SOBAS, nodes use their local time values as a one-time dynamic key to encrypt each message. In this way, SOBAS provides an effective dynamic en-route filtering mechanism, where the malicious data is filtered from the network. With SOBAS, we are able to achieve our main goal of synchronizing events at the sink as quickly, as accurately, and as surreptitiously as possible. With loose synchronization, SOBAS reduces the number of control messages needed for a WSN to operate providing the key benefits of reduced energy consumption as well as reducing the opportunity for malicious nodes to eavesdrop, intercept, or be made aware of the presence of the network. Albeit a loose synchronization per se, SOBAS is also able to provide 7.24 μs clock precision given today's sensor technology, which is much better than other comparable schemes (schemes that do not employ GPS devices). Also, we show that by recognizing the need for and employing loose time synchronization, necessary synchronization can be provided to the WSN application using half of the energy needed for traditional schemes. Both analytical and simulation results are presented to verify the feasibility of SOBAS as well as the energy consumption of the scheme under normal operation and attack from malicious nodes.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 4 )