By Topic

Finding a Periodic Attractor of a Boolean Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Akutsu, T. ; Inst. for Chem. Res., Kyoto Univ., Kyoto, Japan ; Kosub, S. ; Melkman, A.A. ; Tamura, T.

In this paper, we study the problem of finding a periodic attractor of a Boolean network (BN), which arises in computational systems biology and is known to be NP-hard. Since a general case is quite hard to solve, we consider special but biologically important subclasses of BNs. For finding an attractor of period 2 of a BN consisting of n OR functions of positive literals, we present a polynomial time algorithm. For finding an attractor of period 2 of a BN consisting of n AND/OR functions of literals, we present an O(1.985n) time algorithm. For finding an attractor of a fixed period of a BN consisting of n nested canalyzing functions and having constant treewidth w, we present an O(n2p(w+1)poly(n)) time algorithm.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 5 )