By Topic

Brain tumor segmentation and its area calculation in brain MR images using K-mean clustering and Fuzzy C-mean algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Selvakumar ; Department of ECE, Kalasalingam University, Krishnankoil, India ; A. Lakshmi ; T. Arivoli

This paper deals with the implementation of Simple Algorithm for detection of range and shape of tumor in brain MR images. Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different Characteristics and different treatment. As it is known, brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Most Research in developed countries show that the number of people who have brain tumors were died due to the fact of inaccurate detection. Generally, CT scan or MRI that is directed into intracranial cavity produces a complete image of brain. This image is visually examined by the physician for detection & diagnosis of brain tumor. However this method of detection resists the accurate determination of stage & size of tumor. To avoid that, this project uses computer aided method for segmentation (detection) of brain tumor based on the combination of two algorithms. This method allows the segmentation of tumor tissue with accuracy and reproducibility comparable to manual segmentation. In addition, it also reduces the time for analysis. At the end of the process the tumor is extracted from the MR image and its exact position and the shape also determined. The stage of the tumor is displayed based on the amount of area calculated from the cluster.

Published in:

Advances in Engineering, Science and Management (ICAESM), 2012 International Conference on

Date of Conference:

30-31 March 2012