By Topic

An efficient unified systolic architecture for the computation of discrete trigonometric transforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wen-Hsien Fang ; Dept. of Electron. Eng., Nat. Taiwan Inst. of Technol., Taipei, Taiwan ; Ming-Lu Wu

In this paper, a novel unified systolic architecture which can efficiently implement various discrete trigonometric transforms (DXT) including the discrete Fourier transform (DFT), the discrete Hartley transform (DHT), the discrete cosine transform (DCT), and the discrete sine transform (DST) is described. Based on Clenshaw's recurrence formula, a set of efficient recurrences for computing the DXT is developed first. Then, the inherent symmetry of the trigonometric functions is further exploited to render a hardware-efficient, systolic structure. For the computation of any N-point DXT of interest, the proposed structure requires only about N/2 multipliers and N adders, thus providing substantial hardware savings compared with previous works. Furthermore, the new scheme can be easily adapted to compute any type of DXT with only minor modification. The complete I/O buffers have been addressed as well which allows for a continuous flow of successive blocks of input data and transformed results in natural order

Published in:

Circuits and Systems, 1997. ISCAS '97., Proceedings of 1997 IEEE International Symposium on  (Volume:3 )

Date of Conference:

9-12 Jun 1997