Cart (Loading....) | Create Account
Close category search window
 

Fast learning algorithm to improve performance of Quickprop

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chi-Chung Cheung ; Dept. of Electron. & Inf. Eng., Hong Kong Polytech. Univ., Hong Kong, China ; Sin-Chun Ng

Quickprop is one of the most popular fast learning algorithms in training feed-forward neural networks. Its learning rate is fast; however, it is still limited by the gradient of the backpropagation algorithm and it is easily trapped into a local minimum. Proposed is a new fast learning algorithm to overcome these two drawbacks. The performance investigation in different learning problems (applications) shows that the new algorithm always converges with a faster learning rate compared with Quickprop and other fast learning algorithms. The improvement in global convergence capability is especially large, which increased from 4 to 100% in one learning problem.

Published in:

Electronics Letters  (Volume:48 ,  Issue: 12 )

Date of Publication:

June 7 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.