Cart (Loading....) | Create Account
Close category search window
 

Pulse-density modulation technique in VLSI implementations of neural network algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tomberg, J.E. ; Dept. of Electr. Eng., Tampere Univ. of Technol., Finland ; Kaski, K.K.K.

New implementations of fully connected neural network architecture are explored, and some efficient implementations based on the pulse-density modulation technique are presented. These VLSI circuits are fully programmable, thereby usable in many applications. The architecture is implemented by using two different approaches: analog implementation with switched-capacitor structures and fully digital implementation. The approaches are also compared from the VLSI point of view. The advantage of the switched-capacitor implementation is the small area of a synapse, thus relatively large networks can be implemented. The architecture of the network is also regular, modular, and easy to expand. For the same complexity of network architecture, the digital implementation requires 30% more silicon area, which can be considered quite insignificant. The advantage of the fully digital implementation is good expandability to larger networks. In addition, single circuits can be joined together to form very large networks

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:25 ,  Issue: 5 )

Date of Publication:

Oct 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.