By Topic

DC flashover characteristics of a polymeric insulator in presence of surface charges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kumara, S. ; High Voltage Eng., Chalmers Univ. of Technol., Gothenburg, Sweden ; Alam, S. ; Hoque, I.R. ; Serdyuk, Y.V.
more authors

Effect of surface charges on dc flashover characteristics of a composite polymeric insulator is studied by means of experiments and theoretical calculations. The considered insulator consisted of a glass fiber reinforced epoxy core covered with a layer of silicone rubber and terminated by metallic electrodes with rounded smooth edges. In the experiments, the insulator surface was charged by external corona while keeping the electrodes grounded and different charging levels were realized by varying its intensity. A series of disruptive discharge tests were carried out on the charged insulator under negative dc voltages. It was revealed that negative deposited surface charges led to an enhancement of the flashover performance whereas positive ones reduced the flashover voltage level. A theoretical model has been developed and utilized for analyzing the experimental results. In the model, surface charge density profiles deduced from measured surface potential distributions were used as boundary conditions for calculations of electric fields. The measured and calculated flashover voltages were found to be in agreement indicating that the observed variations in the flashover characteristics could be attributed to the modifications of the electric field produced by the surface charges.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:19 ,  Issue: 3 )