By Topic

Congestion Control for Multicast Flows With Network Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lijun Chen ; College of Engineering and Applied Science, UCB 530, University of Colorado, Boulder, CO, USA ; Tracey Ho ; Mung Chiang ; Low, S.H.
more authors

Recent advances in network coding have shown great potential for efficient information multicasting in communication networks, in terms of both network throughput and network management. In this paper, the problem of flow control at end-systems for network-coding-based multicast flows is addressed. Optimization-based models are formulated for network resource allocation, based on which two sets of decentralized controllers at sources and links/nodes for congestion control are developed for wired networks with given coding subgraphs and without given coding subgraphs, respectively. With random network coding, both sets of controllers can be implemented in a distributed manner, and work at the transport layer to adjust source rates and at network layer to carry out network coding. The convergence of the proposed controllers to the desired equilibrium operating points is proved, and numerical examples are provided to complement the theoretical analysis. The extension to wireless networks is also briefly discussed.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 9 )