Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A New Time Series Mining Approach Applied to Multitemporal Remote Sensing Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Romani, L.A.S. ; Dept. of Comput. Sci., Univ. of Sao Paulo, Sao Carlos, Brazil ; de Avila, A.M.H. ; Chino, D.Y.T. ; Zullo, J.
more authors

In this paper, we present a novel unsupervised algorithm, called CLimate and rEmote sensing Association patteRns Miner, for mining association patterns on heterogeneous time series from climate and remote sensing data integrated in a remote sensing information system developed to improve the monitoring of sugar cane fields. The system, called RemoteAgri, consists of a large database of climate data and low-resolution remote sensing images, an image preprocessing module, a time series extraction module, and time series mining methods. The preprocessing module was projected to perform accurate geometric correction, what is a requirement particularly for land and agriculture applications of satellite images. The time series extraction is accomplished through a graphical interface that allows easy interaction and high flexibility to users. The time series mining method transforms series to symbolic representation in order to identify patterns in a multitemporal satellite images and associate them with patterns in other series within a temporal sliding window. The validation process was achieved with agroclimatic data and NOAA-AVHRR images of sugar cane fields. Results show a correlation between agroclimatic time series and vegetation index images. Rules generated by our new algorithm show the association patterns in different periods of time in each time series, pointing to a time delay between the occurrences of patterns in the series analyzed, corroborating what specialists usually forecast without having the burden of dealing with many data charts.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:51 ,  Issue: 1 )