By Topic

Human control strategy: abstraction, verification, and replication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nechyba, M.C. ; Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Yangsheng Xu

In this article, we describe and develop methodologies for modeling and transferring human control strategy. This research has potential application in a variety of areas such as the intelligent vehicle highway system, human-machine interfacing, real-time training, space telerobotics, and agile manufacturing. We specifically address the following issues: (1) how to efficiently model human control strategy through learning cascade neural networks, (2) how to select state inputs in order to generate reliable models, (3) how to validate the computed models through an independent, hidden Markov model-based procedure, and (4) how to effectively transfer human control strategy. We have implemented this approach experimentally in the real-time control of a human driving simulator, and are working to transfer these methodologies for the control of an autonomous vehicle and a mobile robot. In providing a framework for abstracting computational models of human skill, we expect to facilitate analysis of human control, the development of human-like intelligent machines, improved human-robot coordination, and the transfer of skill from one human to another

Published in:

Control Systems, IEEE  (Volume:17 ,  Issue: 5 )