By Topic

Decoupling Control of Linear and Rotary Permanent Magnet Actuator Using Two-Directional d\hbox {-}q Transformation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ping Jin$^{1}$School of Electrical Engineering,, Southeast University,, Nanjing, China ; Heyun Lin ; Shuhua Fang ; S. L. Ho

This paper presents a study on decoupling control of a linear and rotary permanent magnet actuator (LRPMA) with linear, rotary and helical movements. Since both linear and rotary motions of the actuator are dependent on both current and voltage, a novel two-directional d-q transformation is proposed to decouple the inter-relationship between the current and voltage in each coil. The expressions of input power, magnetic field energy, rotary torque, linear force and copper loss are all derived. A MATLAB/Simulink model for helical movement is then setup with hysteresis current control. A practical LRPMA prototype is manufactured and its control system is implemented with a dual digital signal processor. Simulations and experimental measures on the LRPMA prototype are reported to showcase the effectiveness of the control strategy.

Published in:

IEEE Transactions on Magnetics  (Volume:48 ,  Issue: 10 )