Cart (Loading....) | Create Account
Close category search window
 

Learning the Dynamics of Arterial Traffic From Probe Data Using a Dynamic Bayesian Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hofleitner, A. ; Partners for Adv. Transp. Technol., Univ. of California, Berkeley, Berkeley, CA, USA ; Herring, R. ; Abbeel, P. ; Bayen, A.

Estimating and predicting traffic conditions in arterial networks using probe data has proven to be a substantial challenge. Sparse probe data represent the vast majority of the data available on arterial roads. This paper proposes a probabilistic modeling framework for estimating and predicting arterial travel-time distributions using sparsely observed probe vehicles. We introduce a model based on hydrodynamic traffic theory to learn the density of vehicles on arterial road segments, illustrating the distribution of delay within a road segment. The characterization of this distribution is essentially to use probe vehicles for traffic estimation: Probe vehicles report their location at random locations, and the travel times between location reports must be properly scaled to match the map discretization. A dynamic Bayesian network represents the spatiotemporal dependence on the network and provides a flexible framework to learn traffic dynamics from historical data and to perform real-time estimation with streaming data. The model is evaluated using data from a fleet of 500 probe vehicles in San Francisco, CA, which send Global Positioning System (GPS) data to our server every minute. The numerical experiments analyze the learning and estimation capabilities on a subnetwork with more than 800 links. The sampling rate of the probe vehicles does not provide detailed information about the location where vehicles encountered delay or the reason for any delay (i.e., signal delay, congestion delay, etc.). The model provides an increase in estimation accuracy of 35% when compared with a baseline approach to process probe-vehicle data.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:13 ,  Issue: 4 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.