By Topic

Architecture of field-programmable gate arrays: the effect of logic block functionality on area efficiency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rose, J. ; Dept. of Electr. Eng., Toronto Univ., Ont., Canada ; Francis, R.J. ; Lewis, D. ; Chow, P.

The relationship between the functionality of a field-programmable gate array (FPGA) logic block and the area required to implement digital circuits using that logic block is examined. The investigation is done experimentally by implementing a set of industrial circuits as FPGAs using CAD (computer-aided design) tools for technology mapping, placement, and routing. A range of programming technologies (the method of FPGA customization) is explored using a simple model of the interconnection and logic block area. The experiments are based on logic blocks that use lookup tables for implementing combinational logic. Results indicate that the best number of inputs to use (a measure of the block's functionality) is between three and four, and that a D flip-flop should be included in the logic block. The results are largely independent of the programming technology. More generally, it was observed that the area efficiency of a logic block depends not only on its functionality but also on the average number of pins connected per logic block

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:25 ,  Issue: 5 )