By Topic

Cognitive multiple access using soft sensing and secondary channel state information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sultan, A.K. ; Dept. of Electr. Eng., Alexandria Univ., Alexandria, Egypt ; El-Sherif, A.A. ; Seddik, K.G.

We consider a random access primary network. At the beginning of each time slot, a number of secondary users sense the channel and make an access decision based on the spectrum sensing outcome and the channel state information (CSI). Specifically, the channel is accessed by a secondary transmitter with a probability that depends on both the sensing metric and the gain or signal-to-noise-ratio (SNR) of the channel between the transmitter and its respective receiver. Spectrum sensing operates in a “soft” mode where the sensing metric is used directly rather than making a binary decision concerning primary activity. We consider backlogged secondary users and primary users with infinite queues. The secondary access probabilities are obtained via solving an optimization problem designed to maximize the secondary throughput given a constraint on primary queue stability. The problem is shown to be convex and, hence, the global optimum can be obtained efficiently. Numerical results reveal a significant performance improvement in the secondary throughout with stable primary queues over the use of spectrum sensing with conventional detection or the implementation of sensing alone without making use of the CSI information.

Published in:

Wireless Communications and Networking Conference (WCNC), 2012 IEEE

Date of Conference:

1-4 April 2012