By Topic

Ultra-Wideband channel model for intra-vehicular wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. Umit Bas ; Electrical and Electronics Engineering, Koc University ; Sinem Coleri Ergen

Intra-vehicular wireless sensor networks is a promising new research area that can provide part cost, assembly, maintenance savings and fuel efficiency through the elimination of the wires, and enable new sensor technologies to be integrated into vehicles, which would otherwise be impossible using wired means, such as Intelligent Tire. The most suitable technology that can meet high reliability, strict energy efficiency and robustness requirements of these sensors in such a harsh environment at short distance is Ultra-Wideband (UWB). However, there are currently no detailed models describing the UWB radio channel for intra-vehicular wireless sensor networks making it difficult to design a suitable communication system. We analyze the small-scale and large-scale statistics of the UWB channel based on a measurement campaign for a variety of sensor locations beneath the chassis of a vehicle. The analysis for large-scale statistics show that the characteristics of the channel around the tires is very different from the other parts under the chassis. The path loss exponents around the tires and under chassis are 4 and 2.2 respectively. The clustering phenomenon observed in the averaged power delay profile can be well-modeled by Saleh-Valenzuela model. The clusters decay exponentially with arrival time but with a smaller decay constant after 30ms. The decay rate of ray amplitudes is increasing with delay and can be modeled using a dual slope linear model in logarithmic scale. The best fit for inter-cluster arrival time is Weibull distribution. The analysis for small-scale statistics on the other hand show that the best fit for the received energies in each bin at 81 locations of the measurement grid is lognormal distribution with decreasing μ and almost constant σ parameters. Moreover, different bins of the delay can be assumed to fade independently. This is the first work to model small-scale channel characteristics for intra-vehicular wireless sensor ne- works.

Published in:

2012 IEEE Wireless Communications and Networking Conference (WCNC)

Date of Conference:

1-4 April 2012