Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Niknam, T. ; Dept. of Electron. & Electr. Eng., Shiraz Univ. of Technol., Shiraz, Iran ; Narimani, M.R. ; Aghaei, J. ; Azizipanah-Abarghooee, R.

The study presents an improved particle swarm optimisation (IPSO) method for the multi-objective optimal power flow (OPF) problem. The proposed multi-objective OPF considers the cost, loss, voltage stability and emission impacts as the objective functions. A fuzzy decision-based mechanism is used to select the best compromise solution of Pareto set obtained by the proposed algorithm. Furthermore, to improve the quality of the solution, particularly to avoid being trapped in local optima, this study presents an IPSO that profits from chaos queues and self-adaptive concepts to adjust the particle swarm optimisation (PSO) parameters. Also, a new mutation is applied to increase the search ability of the proposed algorithm. The 30-bus IEEE test system is presented to illustrate the application of the proposed problem. The obtained results are compared with those in the literatures and the superiority of the proposed approach over other methods is demonstrated.

Published in:

Generation, Transmission & Distribution, IET  (Volume:6 ,  Issue: 6 )