Cart (Loading....) | Create Account
Close category search window
 

Calibration of Stochastic Computer Models Using Stochastic Approximation Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Yuan ; Dept. of Ind. & Syst. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Szu Hui Ng ; Kwok Leung Tsui

Computer models are widely used to simulate real processes. Within the computer model, there always exist some parameters which are unobservable in the real process but need to be specified in the model. The procedure to adjust these unknown parameters in order to fit the model to observed data and improve predictive capability is known as calibration. Practically, calibration is typically done manually. In this paper, we propose an effective and efficient algorithm based on the stochastic approximation (SA) approach that can be easily automated. We first demonstrate the feasibility of applying stochastic approximation to stochastic computer model calibration and apply it to three stochastic simulation models. We compare our proposed SA approach with another direct calibration search method, the genetic algorithm. The results indicate that our proposed SA approach performs equally as well in terms of accuracy and significantly better in terms of computational search time. We further consider the calibration parameter uncertainty in the subsequent application of the calibrated model and propose an approach to quantify it using asymptotic approximations.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:10 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.