By Topic

The Cybernetic Rehabilitation Aid: Preliminary Results for Wrist and Elbow Motions in Healthy Subjects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Erhan Akdogan ; Dept. of Mechatron. Eng., Yildiz Tech. Univ., Istanbul, Turkey ; Keisuke Shima ; Hitoshi Kataoka ; Masaki Hasegawa
more authors

This paper proposes the cybernetic rehabilitation aid (CRA) based on the concept of direct teaching using tactile feedback with electromyography (EMG)-based motor skill evaluation. Evaluation and teaching of motor skills are two important aspects of rehabilitation training, and the CRA provides novel and effective solutions to potentially solve the difficulties inherent in these two processes within a single system. In order to evaluate motor skills, EMG signals measured from a patient are analyzed using a log-linearized Gaussian mixture network that can classify motion patterns and compute the degree of similarity between the patient's measured EMG patterns and the desired pattern provided by the therapist. Tactile stimulators are used to convey motion instructions from the therapist or the system to the patient, and a rehabilitation robot can also be integrated into the developed prototype to increase its rehabilitation capacity. A series of experiments performed using the developed prototype demonstrated that the CRA can work as a human-human, human-computer and human-machine system. The experimental results indicated that the healthy (able-bodied) subjects were able to follow the desired muscular contraction levels instructed by the therapist or the system and perform proper joint motion without relying on visual feedback.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:20 ,  Issue: 5 )