By Topic

Radiation Efficiency of Longitudinally Symmetric and Asymmetric Periodic Leaky-Wave Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Simon Otto ; University of Duisburg-Essen, Duisburg, Germany ; Amar Al-Bassam ; Andreas Rennings ; Klaus Solbach
more authors

This letter derives efficiency formulas and establishes fundamental limitations for longitudinally symmetric periodic leaky-wave antennas (LWAs). The proposed approach is based on an equivalent transmission-line model for periodic structures, which is derived from a lattice topology providing a perfect decoupling between the series and shunt immittances and their respective radiation contributions. A central result of this letter is that a 2-D array composed of uniformly excited 1-D LWAs cannot exceed a radiation efficiency of 50%. The presented theory is validated by comparing measured and finite-difference time-domain (FDTD) simulated radiation efficiencies with the ones predicted by the lattice model for several symmetrical and asymmetrical series-fed patch (SFP) array antenna and composite right/left-handed (CRLH) antenna configurations.

Published in:

IEEE Antennas and Wireless Propagation Letters  (Volume:11 )