Cart (Loading....) | Create Account
Close category search window

Pinned and unpinned epitaxial graphene layers on SiC studied by Raman spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Grodecki, K. ; Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Poland ; Blaszczyk, J.A. ; Strupinski, W. ; Wysmolek, A.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The study of epitaxial graphene layers grown on SiC by two techniques, namely, the traditional Si sublimation method and the recent chemical vapor deposition (CVD) using temperature induced shift of the Raman 2D line, is presented. The measurements of thermal shift rate of 2D line on 4 H-SiC(0001) allowed us to determine notable differences in interaction of graphene with SiC substrate. The obtained results show that graphene layers grown by Si sublimation of 4 H-SiC(0001) are pinned strongly to the substrate. In contrast, the layers of graphene grown on 4 H-SiC(0001) substrates by CVD showed much weaker pinning. It was found that the film consisting of two or three graphene layers grown by CVD was already unpinned and thus showing Raman shift expected for freestanding graphene. The obtained differences in pinning of epitaxial graphene layers are explained in terms of basic growth mechanism differences between these two methods: graphene growth by Si sublimation is a “bottom-up” process and by CVD—a “top-down” process. The obtained results show that the CVD method of growth is an alternative technology for producing high quality graphene structures on SiC.

Published in:

Journal of Applied Physics  (Volume:111 ,  Issue: 11 )

Date of Publication:

Jun 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.