Cart (Loading....) | Create Account
Close category search window
 

Design of Ternary Logic Combinational Circuits Based on Quantum Dot Gate FETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Karmakar, S. ; Dept. of Electr. & Comput. Eng., Univ. of Connecticut, Storrs, CT, USA ; Chandy, J.A. ; Jain, F.C.

In this paper, we discuss logic circuit designs using the circuit model of three-state quantum dot gate field effect transistors (QDGFETs). QDGFETs produce one intermediate state between the two normal stable ON and OFF states due to a change in the threshold voltage over this range. We have developed a simplified circuit model that accounts for this intermediate state. Interesting logic can be implemented using QDGFETs. In this paper, we discuss the designs of various two-input three-state QDGFET gates, including NAND- and NOR-like operations and their application in different combinational circuits like decoder, multiplier, adder, and so on. Increased number of states in three-state QDGFETs will increase the number of bit-handling capability of this device and will help us to handle more number of bits at a time with less circuit elements.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:21 ,  Issue: 5 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.