By Topic

Design and Control of a Grid-Connected Interleaved Inverter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohammad A. Abusara ; Renewable Energy Research Group, College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Cornwall Campus, U.K. ; Suleiman M. Sharkh

This paper is concerned with the design and control of a three-phase voltage source grid-connected interleaved inverter. This topology enables the use of low-current devices capable of switching at high frequency, which together with the ripple cancelation feature reduces the size of the output filter and the inverter considerably compared to an equivalent classical two-level voltage source inverter with an LCL output filter using high-current devices with considerably lower switching frequency. Due to its higher switching frequency and low-filter component values, the interleaved inverter also has a much higher bandwidth than the classical inverter, which improves grid voltage harmonics disturbance rejection and increases the speed of response of the inverter and its capability to ride through grid disturbance (e.g., voltage sags and swells). The paper discusses the selection of the number of channels and the filter component values of the interleaved inverter. The design of the digital control system is then discussed in detail. Simulation and practical results are presented to validate the design and demonstrate its capabilities.

Published in:

IEEE Transactions on Power Electronics  (Volume:28 ,  Issue: 2 )