By Topic

A Hybrid Brain Computer Interface to Control the Direction and Speed of a Simulated or Real Wheelchair

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jinyi Long ; Sch. of Autom. Sci. & Eng., South China Univ. of Technol., Guangzhou, China ; Yuanqing Li ; Hongtao Wang ; Tianyou Yu
more authors

Brain-computer interfaces (BCIs) are used to translate brain activity signals into control signals for external devices. Currently, it is difficult for BCI systems to provide the multiple independent control signals necessary for the multi-degree continuous control of a wheelchair. In this paper, we address this challenge by introducing a hybrid BCI that uses the motor imagery-based mu rhythm and the P300 potential to control a brain-actuated simulated or real wheelchair. The objective of the hybrid BCI is to provide a greater number of commands with increased accuracy to the BCI user. Our paradigm allows the user to control the direction (left or right turn) of the simulated or real wheelchair using left- or right-hand imagery. Furthermore, a hybrid manner can be used to control speed. To decelerate, the user imagines foot movement while ignoring the flashing buttons on the graphical user interface (GUI). If the user wishes to accelerate, then he/she pays attention to a specific flashing button without performing any motor imagery. Two experiments were conducted to assess the BCI control; both a simulated wheelchair in a virtual environment and a real wheelchair were tested. Subjects steered both the simulated and real wheelchairs effectively by controlling the direction and speed with our hybrid BCI system. Data analysis validated the use of our hybrid BCI system to control the direction and speed of a wheelchair.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 5 )