By Topic

A Distance-Based Locally Informed Particle Swarm Model for Multimodal Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qu, B.Y. ; School of Electric and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China ; Suganthan, P.N. ; Das, S.

Multimodal optimization amounts to finding multiple global and local optima (as opposed to a single solution) of a function, so that the user can have a better knowledge about different optimal solutions in the search space and when needed, the current solution may be switched to a more suitable one while still maintaining the optimal system performance. Niching particle swarm optimizers (PSOs) have been widely used by the evolutionary computation community for solving real-parameter multimodal optimization problems. However, most of the existing PSO-based niching algorithms are difficult to use in practice because of their poor local search ability and requirement of prior knowledge to specify certain niching parameters. This paper has addressed these issues by proposing a distance-based locally informed particle swarm (LIPS) optimizer, which eliminates the need to specify any niching parameter and enhance the fine search ability of PSO. Instead of using the global best particle, LIPS uses several local bests to guide the search of each particle. LIPS can operate as a stable niching algorithm by using the information provided by its neighborhoods. The neighborhoods are estimated in terms of Euclidean distance. The algorithm is compared with a number of state-of-the-art evolutionary multimodal optimizers on 30 commonly used multimodal benchmark functions. The experimental results suggest that the proposed technique is able to provide statistically superior and more consistent performance over the existing niching algorithms on the test functions, without incurring any severe computational burdens.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:17 ,  Issue: 3 )