By Topic

On Temporal Order Invariance for View-Invariant Action Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haq, A. ; Fac. of Inf. Technol., Monash Univ., Clayton, VIC, Australia ; Gondal, I. ; Murshed, M.

View-invariant action recognition is one of the most challenging problems in computer vision. Various representations are being devised for matching actions across different viewpoints to achieve view invariance. In this paper, we explore the invariance property of temporal order of action instances during action execution and utilize it for devising a new view-invariant action recognition approach. To ensure temporal order during matching, we utilize spatiotemporal features, feature fusion and temporal order consistency constraint. We start by extracting spatiotemporal cuboid features from video sequences and applying feature fusion to encapsulate within-class similarity for the same viewpoints. For each action class, we construct a feature fusion table to facilitate feature matching across different views. An action matching score is then calculated based on global temporal order constraint and number of matching features. Finally, the action label of the class with the maximum value of the matching score is assigned to the query action. Experimentation is performed on multiple view Inria Xmas motion acquisition sequences and West Virginia University action datasets, with encouraging results, that are comparable to the existing view-invariant action recognition techniques.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:23 ,  Issue: 2 )