Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Learning Content Similarity for Music Recommendation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
McFee, B. ; Dept. of Comput. Sci. & Eng., Univ. of California at San Diego, La Jolla, CA, USA ; Barrington, L. ; Lanckriet, G.

Many tasks in music information retrieval, such as recommendation, and playlist generation for online radio, fall naturally into the query-by-example setting, wherein a user queries the system by providing a song, and the system responds with a list of relevant or similar song recommendations. Such applications ultimately depend on the notion of similarity between items to produce high-quality results. Current state-of-the-art systems employ collaborative filter methods to represent musical items, effectively comparing items in terms of their constituent users. While collaborative filter techniques perform well when historical data is available for each item, their reliance on historical data impedes performance on novel or unpopular items. To combat this problem, practitioners rely on content-based similarity, which naturally extends to novel items, but is typically outperformed by collaborative filter methods. In this paper, we propose a method for optimizing content-based similarity by learning from a sample of collaborative filter data. The optimized content-based similarity metric can then be applied to answer queries on novel and unpopular items, while still maintaining high recommendation accuracy. The proposed system yields accurate and efficient representations of audio content, and experimental results show significant improvements in accuracy over competing content-based recommendation techniques.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:20 ,  Issue: 8 )