By Topic

A 4-Mb CMOS SRAM with a PMOS thin-film-transistor load cell

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Ootani, T. ; Toshiba Corp., Kawasaki, Japan ; Hayakawa, S. ; Kakumu, M. ; Aona, A.
more authors

A 4-Mb (512 K words by 8-b) CMOS static RAM (SRAM) with a PMOS thin-film transistor (TFT) has been developed. The RAM can obtain a much larger data-retention margin than a conventional high-resistive load-type well by using the PMOS TFT as a memory cell load. An internal voltage down-converter architecture with an external supply voltage-level sensor not only realizes a highly reliable 0.5-μm MOS transistor operation but also a sufficiently low standby-power dissipation characteristic for data battery-backup application. A self-aligned equalized level sensing scheme can minimize the sensing delay for a local sense amplifier to drive a large load capacitance of a global sensing bus line. The RAM is fabricated using a 0.5 μm, triple-poly, and double-aluminum with dual gate-oxide-thickness CMOS process technology. The RAM operates under a single 5-V supply voltage with 23-ns typical address access time and 20- and 70-mA operation current at 10 and 40 MHz, respectively

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:25 ,  Issue: 5 )