By Topic

New design on 2×VDD-tolerant power-rail ESD clamp circuit with low standby leakage in 65nm CMOS process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chih-Ting Yeh ; Inf. & Commun. Res. Labs., Ind. Technol. Res. Inst., Hsinchu, Taiwan ; Ming-Dou Ker

A 2×VDD-tolerant power-rail electrostatic discharge (ESD) clamp circuit with only thin gate oxide 1V devices and silicon-controlled rectifier (SCR) as main ESD clamp device has been proposed and verified in a 65nm CMOS process. The proposed power-rail ESD clamp circuit has an ultra-low standby leakage current by reducing the voltage drop across the gate oxide of the devices in the ESD detection circuit. From the measured results, the proposed design with SCR dimension of 50μm in width can achieve 6.5kV human-body-model (HBM), 300V machine-model (MM) ESD levels, and an ultra-low standby leakage current of 34.1nA at room temperature under the normal circuit operating condition with 1.8V bias.

Published in:

VLSI Design, Automation, and Test (VLSI-DAT), 2012 International Symposium on

Date of Conference:

23-25 April 2012