By Topic

Reducing Signaling Overhead for Femtocell/Macrocell Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huai-Lei Fu ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Phone Lin ; Yi-Bing Lin

Femtocell technology has been proposed to offload user data traffic from the macrocell to the femtocell and extend the limited coverage of the macrocell in mobile communications networks. In existing commercial femtocell/macrocell networks, a widely accepted solution to configure the location areas (LAs) is to partition the femtocells overlapped with a macrocell into small groups and to assign each group with a unique LA ID different from that of the macrocell. Such configuration can reduce the paging cost in the mobility management, but increases registration signaling overhead due to discontinuous coverage of femtocells. To reduce signaling overhead in the femtocell/macrocell network, we propose a delay registration (DR) algorithm that postpones the registration until the delay timer expires when the mobile station (MS) moves into the overlapped femtocell. Analytical models and simulation experiments are proposed to investigate the performance of the DR algorithm. Our analytical models are generally enough to accommodate various MS mobility behaviors. Our study can provide guidelines for the operators to set up a delay timer to reduce signaling overhead while sustaining the traffic offloading capability of the femtocell.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:12 ,  Issue: 8 )