By Topic

Cooperative Carrier Signaling: Harmonizing Coexisting WPAN and WLAN Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xinyu Zhang ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Shin, K.G.

The unlicensed ISM spectrum is getting crowded by wireless local area network (WLAN) and wireless personal area network (WPAN) users and devices. Spectrum sharing within the same network of devices can be arbitrated by existing MAC protocols, but the coexistence between WPAN and WLAN (e.g., ZigBee and WiFi) remains a challenging problem. The traditional MAC protocols are ineffective in dealing with the disparate transmit-power levels, asynchronous time-slots, and incompatible PHY layers of such heterogeneous networks. Recent measurement studies have shown moderate-to-high WiFi traffic to severely impair the performance of coexisting ZigBee. We propose a novel mechanism, called cooperative carrier signaling (CCS), that exploits the inherent cooperation among ZigBee nodes to harmonize their coexistence with WiFi WLANs. CCS employs a separate ZigBee node to emit a carrier signal (busy tone) concurrently with the desired ZigBee's data transmission, thereby enhancing the ZigBee's visibility to WiFi. It employs an innovative way to concurrently schedule a busy tone and a data transmission without causing interference between them. We have implemented and evaluated CCS on the TinyOS/MICAz and GNURadio/USRP platforms. Our extensive experimental evaluation has shown that CCS reduces collision between ZigBee and WiFi by 50% for most cases, and by up to 90% in the presence of a high-level interference, all at negligible WiFi performance loss.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:21 ,  Issue: 2 )