By Topic

A Low-Voltage, Low-Power, and Low-Noise UWB Mixer Using Bulk-Injection and Switched Biasing Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Myoung-Gyun Kim ; Dept. of Electr. & Comput. Eng., Hanyang Univ., Seoul, South Korea ; Hee-Woo An ; Yun-Mo Kang ; Ji-Young Lee
more authors

This paper presents a low-voltage, low-power, low-noise, and ultra-wideband (UWB) mixer using bulk-injection and switched biasing techniques. The bulk-injection technique is implemented for a low supply voltage, thus resulting in low power consumption. This technique also allows for a flat conversion gain over a wide range of frequencies covering the full UWB band; this is a result of the integration of the RF transconductance stage and the local oscillator switching stage into a single transistor that is able to eliminate parasitic effects. Moreover, since the bulk-injection transistors of the mixer are designed to operate in the subthreshold region, current dissipation is reduced. A switched biasing technique for the tail current source, in place of static biasing, is adopted to reduce noise. The effects of modulated input signals, such as AM and FM, are simulated and measured to demonstrate the robustness of the switched biasing technique. The proposed mixer offers a measured conversion gain from 7.6 to 9.9 dB, a noise figure from 11.7 to 13.9 dB, and input third-order intercept point from - 10 to - 15.5 dBm, over 2.4 to 11.9 GHz, while consuming only 0.88 mW from a 0.8-V supply voltage. The chip size including the test pads is 0.62×0.58 mm2 using a 0.18-μm RF CMOS process.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 8 )