By Topic

A High-Performance Continuously Tunable MEMS Bandpass Filter at 1 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yonghyun Shim ; Electr. Eng. & Comput. Sci. Dept., Univ. of Michigan at Ann Arbor, Ann Arbor, MI, USA ; Zhengzheng Wu ; Rais-Zadeh, M.

This paper reports a continuously tunable lumped bandpass filter implemented in a third-order coupled resonator configuration. The filter is fabricated on a Borosilicate glass substrate using a surface micromachining technology that offers hightunable passive components. Continuous electrostatic tuning is achieved using three tunable capacitor banks, each consisting of one continuously tunable capacitor and three switched capacitors with pull-in voltage of less than 40 V. The center frequency of the filter is tuned from 1 GHz down to 600 MHz while maintaining a 3-dB bandwidth of 13%-14% and insertion loss of less than 4 dB. The maximum group delay is less than 10 ns across the entire tuning range. The temperature stability of the center frequency from -50°C to 50°C is better than 2%. The measured tuning speed of the filter is better than 80 s, and the is better than 20 dBm, which are in good agreement with simulations. The filter occupies a small size of less than 1.5 cm × 1.1 cm. The implemented filter shows the highest performance amongst the fully integrated microelectromechanical systems filters operating at sub-gigahertz range.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 8 )