By Topic

A 40-mW 7-bit 2.2-GS/s Time-Interleaved Subranging CMOS ADC for Low-Power Gigabit Wireless Communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
I-Ning Ku ; Department of Electrical Engineering, University of California, Los Angeles, CA, USA ; Zhiwei Xu ; Yen-Cheng Kuan ; Yen-Hsiang Wang
more authors

A 7-bit, 2.2-GS/s time-interleaved subranging CMOS analog-to-digital converter (ADC) for low-power gigabit wireless communication system-on-a-chip (SoC) is presented. A time-splitting subranging architecture is invented to significantly boost the speed of individual ADC channels. In addition, a low-power and fast-settling distributed resistor array for reference voltages is proposed to mitigate gain mismatches within channels. Moreover, the channel offset mismatches are calibrated through the digital- controlled corrective current sources embedded in the track-and-hold amplifiers of each sub-ADC. The prototype is implemented in 65 nm CMOS, occupying only 0.3 mm2 chip area and consuming 40 mW at 2.2 GS/s from a 1 V supply. Measured signal-to-noise and distortion ratio (SNDR) and spurious-free dynamic range (SFDR) are 38 dB and 46 dB, respectively, with a 1.08 GHz input at 2.2 GS/s sampling rate. The effective number of bits (ENOB) is 6.0 bits at Nyquist rate, and the figure-of-merit (F.O.M.) is 0.28 pJ/conv.-step. This prototype has also been integrated into a gigabit self-healing wireless transceiver SoC.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:47 ,  Issue: 8 )