By Topic

Resilient Self-Compressive Monitoring for Large-Scale Hosting Infrastructures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yongmin Tan ; MathWorks Inc., Natick, MA, USA ; Venkatesh, V. ; Xiaohui Gu

Large-scale hosting infrastructures have become the fundamental platforms for many real-world systems such as cloud computing infrastructures, enterprise data centers, and massive data processing systems. However, it is a challenging task to achieve both scalability and high precision while monitoring a large number of intranode and internode attributes (e.g., CPU usage, free memory, free disk, internode network delay). In this paper, we present the design and implementation of a Resilient self-Compressive Monitoring (RCM) system for large-scale hosting infrastructures. RCM achieves scalable distributed monitoring by performing online data compression to reduce remote data collection cost. RCM provides failure resilience to achieve robust monitoring for dynamic distributed systems where host and network failures are common. We have conducted extensive experiments using a set of real monitoring data from NCSU's virtual computing lab (VCL), PlanetLab, a Google cluster, and real Internet traffic matrices. The experimental results show that RCM can achieve up to 200 percent higher compression ratio and several orders of magnitude less overhead than the existing approaches.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 3 )