By Topic

Tiered Memory: An Iso-Power Memory Architecture to Address the Memory Power Wall

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kshitij Sudan ; University of Utah, Salt Lake City ; Karthick Rajamani ; Wei Huang ; John B. Carter

Moore's Law improvement in transistor density is driving a rapid increase in the number of cores per processor. DRAM device capacity and energy efficiency are increasing at a slower pace, so the importance of DRAM power is increasing. This problem presents system designers with two nominal options when designing future systems: 1) decrease off-chip memory capacity and bandwidth per core or 2) increase the fraction of system power allocated to main memory. Reducing capacity and bandwidth leads to imbalanced systems with poor processor utilization for noncache-resident applications, so designers have chosen to increase DRAM power budget. This choice has been viable to date, but is fast running into a memory power wall. To address the looming memory power wall problem, we propose a novel iso-power tiered memory architecture that supports 2-3X more memory capacity for the same power budget as traditional designs by aggressively exploiting low-power DRAM modes. We employ two "tiers” of DRAM, a "hot” tier with active DRAM and a "cold” tier in which DRAM is placed in self-refresh mode. The DRAM capacity of each tier is adjusted dynamically based on aggregate workload requirements and the most frequently accessed data are migrated to the "hot” tier. This design allows larger memory capacities at a fixed power budget while mitigating the performance impact of using low-power DRAM modes. We target our solution at server consolidation scenarios where physical memory capacity is typically the primary factor limiting the number of virtual machines a server can support. Using iso-power tiered memory, we can run 3× as many virtual machines, achieving a 250 percent improvement in average aggregate performance, compared to a conventional memory design with the same power budget.

Published in:

IEEE Transactions on Computers  (Volume:61 ,  Issue: 12 )